Executive Summary

The first Airport Master Plan (AMP) was completed in 1984 and updated in 2000. The current FAA approved Airport Layout Plan (ALP) is dated November 9, 2001. The FAA suggests updating the AMP every five year in accordance with FAA Advisory Circular (AC) 150-5070-6B, Airport Master Plans.

The AMP is a guide for implementing a 5-year capital improvement plan (CIP) and to assess the impact of other public or private airport development on the safety and operational needs. The objectives of this study are to: (a) update the airport inventory and forecasts to reassess the airport role, (b) assess airport's ability to meet latest FAA design standards, (c) assess the feasibility of providing a precision instrument approach and (d) identify projects for the planning period.

NOTE: This Executive Summary only provides with the reader with highlights of each Chapter. A complete assessment is contained in the full AMP report.

Chapter 1 – Baseline Conditions

It is a compilation of data based on site inspections completed on June 24 and July 17, 2008. A complete narrative of these conditions is contained in the full AMP report.

Existing Airport Role: Based on FAA criteria, SFZ is a "B-II Airport". It serves Category B (Speed >91 knots but <121 knots) and Design Group II (Wingspan >49 feet but <79 feet) aircraft. It means the airport activity is primarily single and twin-engine piston aircraft.

Runway Inventory						
Name	Runway 5/23	Runway 15/33				
Length	5,000 feet	3,210 feet				
Width	100 feet	75 feet				
Material	Bituminous Concrete	Bituminous Concrete				
Strength	60,000 lbs. Double Wheel	12,500 lbs. Single Wheel				
Lighting	High Intensity Runway Lighting System	Medium Intensity Runway Lighting System				
Markings	Non-Precision Instrument	Basic				
Visual	5 – VASI & Medium Approach Lighting System	15 – Precision Approach Path Indicator				
Aids	23 – Precision Approach Path Indicator	33 – None				
RSA	150 feet wide by 300 feet long	150 feet wide by 300 feet long				

Dupuyou Inventor

Runway / Taxiway	/ Apron Pavement Condition	n
------------------	----------------------------	---

Airfield Component	Rehabilitated	Condition
Runway 5/23	2006	Excellent
Runway 15/33	2002	Good
Runway Intersection	2006/2002	Good
Taxiway A	2007	Excellent
Taxiway B	N/A	Fair
Taxiway C	N/A	Fair-Excellent
Taxiway D	N/A	Fair-Excellent
Aircraft Parking Apron	N/A	Poor-Fair

Year	Total Operations	Itinerant Operations	% Itinerant Operations	Local Operations	% Local Operations	Total Based Aircraft	Local Ops/ Based A/C	
1998	41,054	20,240	49%	20,814	51%	144	145	
1999	54,956	27,508	50%	27,448	50%	117	235	
2000	42,400	22,862	54%	19,538	46%	117	167	
2001	47,269	26,518	56%	20,751	44%	115	180	
2002	48,015	6,732	14%	41,283	86%	115	359	
2003	32,108	1,562	5%	30,546	95%	115	266	
2004	24,880	3,543	14%	21,337	86%	115	186	
2005	29,510	11,556	39%	17,954	61%	115	156	
2006	31,337	4,813	15%	26,524	85%	115	231	
2007	27,181	12,034	46%	14,789	54%	116	127	
2008*	22,819	N/A	N/A	N/A	N/A	110	N/A	

Annual Historical Aircraft Operations and Based Aircraft

2007 Based Aircraft Fleet Mix Percentage

J					
Aircraft Type	Number of Based Aircraft	Percentage of Total Aircraft			
Single Engine	107	92%			
Twin Engine	9	8%			
Helicopters	0	0%			
Total	116	100%			

Chapter 2 – Precision Approach

Instrument approaches are either precision or non-precision. A non-precision approaches provides lateral course information only. There is a non-precision instrument approach to Runway 5.

Precision approaches utilize both lateral (Localizer) and vertical (Glide Slope) information. Because of the relative low level of activity SFZ would not qualify for an FAA installed Instrument Landing System (ILS). However, using Global Positioning Satellites (GPS), it is possible to support vertically-guided instrument approaches without the ground based infrastructure required by an ILS. In 2010, FAA will complete a survey and develop a LPV approach procedure. FAA will require RIAC to verify that the LPV surfaces are clear of obstructions. The goal is minimums of 400 foot ceiling and ³/₄ mile visibility.

The LPV analysis used FAA AC 150/5300-13 "Airport Design". The analysis assumes the LPV approach is based on the current ARC B-II design standard. An ARC C-II standard requires major capital airfield improvements. That includes:

- Substantial filling and grading at each end of Runway 5-23 to achieve the 1,000' RSA
- Shifting Runway 5-23, or relocating Albion Road, to satisfy the increased OFA width
- Shifting the parallel taxiway 50' to achieve the runway taxiway separation
- Adding apron to offset apron lost by shifting taxiway and encroachment of the OFA
- Acquiring land for the larger RPZ on R/W 5 end and larger RSA on the R/W 23 end
- The cost of environmental/engineering studies required to implement the improvements

The forecast predicts an LPV approach would not increase the activity level of C-II aircraft to >500 ops/year and therefore the airfield improvements noted above would not be implemented.

Summary of Precision Approach Feasibility Study:

- SFZ is a viable candidate for an LPV approach to Runway 5.
- It meets all but one LPV requirement for a B-II airport (Needs "All Weather" runway markings.)
- An investment of about \$450,000 may needed to implement a LPV approach
- The forecasts indicate that an increase to C-II standards (>500 ops/year) is unlikely.
- It is not prudent to make a significant infrastructure investment to achieve ARC C-II standards

Conclusion: A LPV precision approach meeting ARC B-II criteria is recommended. It provides the low weather safety enhancements with minimal investment.

Chapter 3 – Forecasts and Airport Role

A low, medium, and high growth scenario was established. The short range period is the most achievable. <u>Project development should only occur if the activity projection is realized</u>.

- Low Growth (0.5%) Scenario: Considers recent declines in activity.
- Medium Growth (1.30%) Scenario: Utilizes 2004 RI/ASP growth rate.
- High Growth (3.0%) Scenario: Assumes the instrument approaches are improved.

		Historical	Growth	Forecast			
Scenario		2007	Rate	2012	2017	2027	
One Low Crowth	Based Aircraft		0.05%	119	122	128	
One – Low Growin	Aircraft Operations		0.05%	27,867	28,571	30,032	
Two Modium Crowth	Based Aircraft	116	1.30%	129	137	156	
Two – Medium Growin	Aircraft Operations	27,181	1.30%	30,289	32,310	36,765	
Throo Lligh Crowth	Based Aircraft		3.00%	141	167	224	
miee – nigh Glowin	Aircraft Operations		3.00%	33,323	39,408	52,961	

SFZ Forecast Summary

Based Aircraft Fleet Mix Forecast

	2007 Historical	Scenario One - Low		Scenario Two - Medium			Scenario Three - High			
Aircraft Type	Fleet Mix	2012	2017	2027	2012	2017	2027	2012	2017	2027
Single-Piston	92%	110	113	118	119	126	143	130	154	206
Multi-Piston	8%	9	9	10	10	11	12	11	12	16
Helicopter	0%	0	0	0	0	0	1	0	0	2
Total	100%	119	122	128	129	137	156	141	167	224

The Airport Role is defined by an FAA coding system referred to as the Airport Reference Code (ARC). The ARC relates airport design criteria to the operational and physical characteristics of the aircraft forecasted

routinely to operate at the airport (>500 operations/year). The first component is the aircraft approach speed, an operational characteristic. The second component is the aircraft design group and relates to the aircraft wingspan, a physical characteristic. Operations are characterized by single and twin-engine piston aircraft, with occasional turbo prop and small to medium size jet activity. The approach speed category B (> 91 knots but < 121 knots) and Design Group II (wing span > 49 feet or < 79 feet) is still the ARC for the 20-year planning period as B-II. Even if a LPV precision approach is implemented, the >500 operations/year by aircraft larger than a B-II, are not projected during the planning period.

Conclusion: With input from the LAG, the "High Growth" scenario was the selected forecast. This judgment was based on the following considerations.

- It tested the limits of the airport's ability to handle the most optimistic demand.
- If the facility requirements analysis showed SFZ could accommodate the "High Growth" demand then it was capable of accommodating less.
- Regardless of the forecast, "Project development would only occur if the projection is realized."
- FAA funding is typically available for the highest priority need based on the actual activity.
- An instrument (LPV) approach would improve the airports' role as a Reliever.
- SFZ will remain in its current role as a General Utility Stage II Airport having an ARC of B-II.

Chapter 4 – Facility Requirements

The purpose of this chapter is to determine whether the airport can accommodate the forecasted demand. If it cannot, the Alternatives Analysis chapter will determine the extent new or expanded facilities can meet the forecasted demand. The title implies the facilities are "required" to maintain a viable and safe airport. In an ideal world providing for the requirements to meet the projected demand is a reasonable expectation.

On the other hand, the physical and/or financial resources available may not allow an airport to fully develop under the circumstances. Nonetheless, before the planning can take place to achieve what is "doable" it is important to understand the ultimate facility requirements. The *Facility Requirements* chapter compares the forecasts, to the latest airport industry standards and FAA design guidance. The end result is a list of facility needs. In summary this Chapter introduces a list of needs but it does not produce a plan.

Airport facility improvements (a) meet the existing or forecasted demand of the facility, (b) meet FAA criteria (Advisory Circular 150/5300-13, *Airport Design*), (c) insure a well maintained facility and (d) enhance operational efficiency.

 Airfield Capacity: The ability to accommodate a specific number of annual aircraft operations. The analysis is based on FAA AC 150/5060-5 *Airport Capacity and Delay.* For SFZ the figure is about 230,000 annual operations. The "High Growth" demand will not exceed the airfield capacity during the planning period. <u>Improvements to increase airfield capacity are not recommended during the</u> <u>20-year period.</u>

- Wind Coverage: FAA criteria recommend that that a single runway should provide 95% wind coverage. <u>Based on this wind data, the current runway configuration at SFZ provides enough wind</u> <u>coverage to meet the FAA guidelines.</u>
- Runway Length Analysis: The recommended length for a primary runway is based on FAA AC 150/5325-4B, *Runway Length Requirements for Airport Design*. Aircraft that utilize the airport on a regular basis (>500 itinerant operations/year includes the Cessna 172 and Piper Navajo and the Beech King Air. <u>The analysis indicates Runway 5-23 is adequate to accommodate 100% of the small aircraft fleet and the critical design aircraft.</u>
- FAA guidelines recommend a cross-wind runway length of at least 80% of the primary runway (4,000 feet). Runway 15/33 is only 3,210 feet. <u>However, based on the excellent wind coverage on</u> <u>Runway 5-23 and the runway length required for the typical aircraft that use SFZ, it is reasonable</u> to state that an extension of the crosswind runway is not essential at this time.
- Additional Taxiway Needs: Runway 15/33 does not have a full length parallel taxiway. Having a
 full parallel taxiway to the ends of all runways is an especially useful safety feature at airports
 where an Air Traffic Control Tower does not exist. The alternatives analysis will evaluate extending
 the existing parallel taxiway to Runway 15.

Airfield Component	Dimensional Standards	Existing Condition	Meets Standard
Runway Width			
- 15/33 (B-I)	60′	75′	Yes
- 05/23 (B-II)	75′	100′	Yes
Runway Centerline to:			
- 15/33 to Taxiway A	225′	230′	Yes
- 05/23 to Taxiway B	240′	350′	Yes
- 05/23 to Aircraft Parking Apron	250′	400′	Yes
Taxiway Width			
- Taxiway A	25′	40′	Yes
- Taxiway B	35′	50′	Yes
- Taxiway C	35′	50′	Yes
- Taxiway D	35′	50′	Yes

Runway and Taxiway Design Standards:

- Runway Safety Areas (RSA): Must be clear of obstructions, graded and be capable of supporting aircraft without causing structural damage or the risk of serious injuries to passengers. <u>All the RSA</u> meet the standards required by the FAA.
- Object Free Area (OFA): Should be clear of objects except for those whose location is fixed by function. The OFA for Runway 5-23 is 500 feet wide (centered along runway the centerline.) It extends 300 feet beyond runway end. The OFA for Runway 15-33 is 400 feet wide, (centered along runway centerline) and extends 240 feet beyond the runway end. <u>The OFA is free of objects and meets FAA standards.</u>

- Runway Visibility Zone (RVZ): It is an area formed by imaginary lines connecting the visibility points of two runways. Within the RVZ, an unobstructed line of sight from any point five feet above one runway centerline to any point five feet above an intersecting centerline must be protected. <u>A</u> portion of the parking apron and fuel tanks is in the RVZ.
- Runway Protection Zones (RPZ): It is used to enhance the protection of people and property on the ground. It is trapezoidal in shape (centered about the extended runway centerline). The FAA requires the airport to do all that is feasible and prudent to maintain a clear RPZ by purchasing the property or avigation easements.
 - Runway 05 There is one residence that should be acquired to gain control.
 - o Runway 23 Approximately 50 percent of this RPZ is outside of the airport property.
 - Runway 15 It meets standards and is wholly within airport property.
 - o Runway 33 It is nearly 100 percent on airport property.

The alternatives analysis will consider achieving the FAA requirements.

- NAVAID and Visual Aids: [See Precision Approach Feasibility Study]
 - GPS can provide the airport with a new instrument approaches at minimal cost because the installation and maintenance of costly ground-based transmission equipment is not required. The feasibility of implementing a new instrument approach procedure is the responsibility of the FAA. The airport must coordinate with the FAA and they will ultimately certify the new procedure. <u>The lowest minimums achievable to Runway 5 are: 400 foot ceiling height and 34 mile visibility.</u>

7.661.00001	ppi ouon nogun onne	1110				
Visibility Minimums	<3/4-statute mile	<1-statute mile	1-statute mile	>1-statute mile		
Height Above Touchdown	250	300	350	400		
TERPS Paragraph 251	34:1 clear	20:1 clear	20:1 clear or penetrations lighted for night minimums (see AC 70/7460-1)			
Precision Object Free Zone	Required	Recommended	Recommended			
Airport Layout Plan	Must be on approved ALP					
Minimum Runway Length	4,200 ft. paved	3,200 ft. paved	3,200 ft.			
Runway Marking	precision	Non-precision	Non-precision			
Runway Edge Lights	HIRL/MIRL		MIRL/LIRL			
Parallel Taxiway	Required		Required			
Approach Lights	Required – ODALS/MA	ALS,SSALS	Recommended			
Runway Design Standard	APV OFZ Required					

Approach Procedure with Vertical Guidance – Approach Requirements

- **GA Terminal Building:** The condition of the terminal facility is excellent and meets the FAA facility objectives. There is no immediate need to increase the size of the facility.
- Apron and Hangar: The tables below project the apron and hangar space. The latter is essential if RIAC is presented a proposal from private investors to develop on the airport.

Existing Apron Space Capacity

Based & Itinerant Aircraft Apron Parking Requirements

	2007	2012	2017	2027
Based Aircraft Apron	24,300	27,300	32,400	48,420
Itinerant Aircraft Apron	4,680	5,760	6,840	9,360
Sub-total	28,980	33,060	39,240	57,780
Existing Area	38,966	38,966	38,966	38,966
Surplus (Deficiency)	9,986	5,906	(274)	(18,814)

Based and Itinerant Aircraft Hangar Requirements

	2007	2012	2017	2027
Based Aircraft	35	42	50	67
Based Requirements @ 1,500 sq. ft.	52,500	63,000	75,000	100,500
Itinerant Aircraft	3	3	4	5
Itinerant Requirements @ 2,500 sq. ft.	7,500	7,500	10,000	12,500
Total Required Hangar Area	60,000	70,500	85,000	113,000
Existing Hangar Area	63,500	63,500	63,500	63,500
Surplus (Deficiency)	3,500	(7,000)	(16,500)	(49,500)

- Fuel Storage Facility: Airport user survey results support a self fueling station to dispense 100LL Avgas fuel. Existing tank capacities will accommodate future demand. <u>The existing fuel farm</u> <u>penetrates the Runway Visibility Zone and must be relocated.</u>
- Maintenance Equipment and Storage: The airport does not have a building to house maintenance vehicles or snow removal equipment (SRE). <u>The vehicles are exposed year round to</u> <u>excessive wear and tear and the planning should provide for and SRE building.</u>
- Airport Utilities: <u>No changes to water and sewer services are anticipated</u>.
- Access Road and Automobile Parking Analysis: The roads to the airport are in good condition, have good traffic flow and adequate signage. The new terminal automobile parking is inadequate. The old terminal location is still utilized to meet parking demand.

Existing Automobile Parking Capacity

Access between the between the old and new terminal two is inadequate. <u>Access between the old and new</u> parking areas is needed to satisfy the auto parking capacity.

Summary of Airport Facility Requirements to be addressed in the Alternatives Analysis.

- Full parallel taxiway to Runway 15-33;
- LPV approach to Runway 05
- Clear Runway Visibility Zone (includes aircraft parking and fuel farm).
- Additional Aircraft Apron Space by 2017 (Possibly sooner to clear the RVZ)
- Additional Hangar Space by 2012 (t-hangar or additional conventional space)
- Self-Service Aircraft Fueling
- Use and Redevelopment of the Old Terminal Facility
- Connection of Upper and Lower Level Auto Parking Areas
- Snow Removal Equipment Building

Chapter 5 – Alternatives Analysis

In Chapter 5, "Alternatives Analysis", the master plan takes the facility requirements discussion and assesses project development concepts that can be realistically provided. It is the difference between "requirements" and "reality". The process identifies and evaluates alternatives that can meet the needs of the airport user and is consistent with the strategic vision of RIAC. The "alternative analysis" process involves:

- Identifying reasonable options that can achieve the facility requirement
- Evaluating the pro and con for each option to understand the most reasonable option
- Selecting the preferred alternative.

When assessing the implications of each alternative the most prominent factors are:

- Operational and safety improvements
- Engineering feasibility
- Environmental, and land use impacts
- Financial implications

SFZ Airfield Quadrants

Airport Alternatives Matrix

The following matrix identifies each of the airport alternatives with the preferred alternative.

Category	Alternatives	Preferred Alternative
Runways	R1: No-Build/Status Quo	Option R1 No-Build/Status Quo
Runway 5 LPV	L1: No-Build/Status Quo	Option L2 is the best option at this time.
and Upgrade	L2: Maintain Existing MALSF with LPV	Do not dismiss L3 for the Medium - Long
Approach	approach	Range time frame. Perform a more
Lighting System	L3: Upgrade Approach Lighting (MALSF	detailed analysis of L3 as part of an AMP
	to MALSR)+LPV	Update.
Taxiways	T1: No-Build (Status Quo) Option	Option T3 provides most of the
	T2: Construct Parallel Taxiway to	operational benefits wo/
	Runway 15-33	the environmental issues associated with
	T3: Extend Taxiway A Up To Delineated	filling wetlands. It has minimal
	Wetlands	engineering and more reasonable costs.

Alternatives Analysis Summary Matrix

Category	Alternatives	Preferred Alternative
Aprons	A1: No Build/Status Quo	A4 and A5 provide for short-term options,
	A2: Expand Aircraft Apron Adjacent to	while A2 has the least amount of
	A3 ⁻ Expand Aircraft Apron Adjacent to	operational and safety benefits. The
	Runway 15-33	need for wetland
	A4: Reconfigure Apron in Front of the	mitigation will be in the EA.
	Old Terminal Build.	
	As: Reconfigure a portion of the NE Aviation Leasehold	
Old Terminal	01: No-Build-Status Quo	Option based on private development
Bldg.	O2: Rehabilitate Old Terminal Build. for	proposals provided
	Aeronautical se	to RIAC. Highest and Best Use is likely a
	03: Demolish Old Terminal Build.	nybrid maintaining aeronautical
	Restaurant	development.
Corporate	H1: No-Build/Status Quo Options	H2 and H4 have their respective
Hangars/T-	H2: Construct New T-hangars in the East	operational benefits. To maintain
Hangars	quadrant adjacent to R/W 15-33	tlexibility and provide private investment
	South quadrant adjacent to R/W 15-33	Ontion H2 and H4 on the ALP Also the
	H4, 4a, 4b: Construct T-hangars or	Old Terminal Building and the New
	Corporate Hangar Adjacent to R/W 5-23	England Aviation hangar provide areas
	(north or south of Rosetti Hangar)	for redevelopment options.
Snow Removal	S1: No Build/Status Quo	Option S2 is the logical choice. In
Equipment	S2: Const. SRE Build. Airside (E. Quad.)	addition the practical
Building	@ Wilbur Rd	consideration that an SRE is more
	S3: Const. SRE Build. Landside (E. Quad.) @ Entrance Rd	efficient if located on the airport, it is also function of what is the
		most cost effective.
Fuel Farm	F1: No-Build-Status Quo	Option F5 appears to have the least
Relocation	F2: Relocate Fuel Farm North of the	number of operational
	New England Aviation Facility	impacts. Option F5 also satisfies the
	island located outside the RV7	objective for the Fuel Farm relocation
	F4: Relocate Fuel Farm south of the Old	alternatives.
	Terminal building on the existing apron,	
	outside the RVZ	
	S2 and H2 ontions minimizing	
	operational impacts	

Category	Alternatives	Preferred Alternative
Automobile	P1: No-Build/Status Quo	Option P3 provides the greatest benefit
Parking	P2: Construct an Access Road with	in terms of operational efficiency and
Area and Access	sidewalk from the Airport Entrance Road	also increases the safety for pedestrian
Development	to Upper Level Parking Area	traffic. Construction could be phased
	P3: Construct a Pedestrian Walkway	dependent on available funds.
	from Upper Level Parking to Existing	
	Terminal	

Chapter 6 – Airport Layout Plan

This chapter presents the results of the plan in a set of detailed airport plan drawings referred to as an Airport Layout Plan (ALP) sheet set. The ALP drawing set depicts existing and future facilities planned within a 20 year planning period. The drawing set is submitted to the FAA for approval to, become the official the ALP. The ALP drawing set contains the following drawings:

- Existing Airport Layout Plan: It is a graphic presentation of the existing facilities, their location on the airport and associated dimensional information at the time of this Master Plan. Information provided on this drawing includes data tables, airfield facilities, surrounding transportation infrastructures, off airport buildings, and relevant topography.
- Ultimate Airport Layout Plan: It depicts the proposed projects identified in the, *Alternatives Analysis* chapter of the Master Plan. The projects shown are for the full 20-year planning period.
- FAR Part 77 Surfaces Plan: It shows the full FAR Part 77 Imaginary Surfaces on a USGS Quadrangle map. This plan assists surrounding jurisdictions in determining if the construction of a proposed structure will penetrate any aeronautical surfaces.
- Terminal Area Plan: It shows the location and configuration of existing and proposed buildings and paved areas in the terminal area of the airport, including hangars and parking lots. It depicts future development adjacent to Taxiway "A" on the Runway 33 end.
- Airport Land Use Plan: It shows existing land use within the airport's property limits and the airport vicinity in general. This drawing can be used to assist RIAC with a plan for zoning, and provides guidance to local authorities for establishing zoning.

Chapter 7 – Environmental Review

The purpose of this chapter is to conduct a general assessment of the environmental effects of the all the projects in the 20-year planning period and to define the potential future environmental analyses that is needed to implement the airfield improvements. It will also define any "Categorically Exempt" improvements and identify any possible mitigation measures or modifications to avoid, minimize or mitigate environmental impacts. A comprehensive Environmental Assessment (EA) for the short-term (5 year)

projects will be conducted using the FAA Advisory Circular 150/5070-6B, FAA Order 5050.4B, Airport Environmental Handbook. The standards to be evaluated include:

Noise Impacts, Land Use, Air Quality, Water Quality, Surface Water, Ground Water, Drinking Water, Storm Water, U.S. Department of Transportation Act Section 4(f) Land, Historic, Architectural, Archaeological, and Cultural Resources, Biotic Communities Threatened or Endangered Species of Flora and Fauna, Wetlands, Floodplains, Coastal Zone Management, Coastal Barriers, Wild and Scenic Rivers, Farmland, Energy Supply and Natural Resources Light Emissions, Solid Waste Impact, Environmental Justice (EJ).

Summary – As a result of this environmental overview:

- The projects do not appear to have a significant impact on the community or environment.
- The project design phase will require coordination with federal, state, and local agencies.
- An EA in accordance with FAA requirements will be conducted for each phase.

The recommendations to be incorporated in the EA for the Phase I AMP Implementation Plan:

- Obtain RI/WQC and RI/DEM permit or certification for projects in or adjacent to wetlands.
- Incorporate engineering controls to eliminate the potential effects of peak storm water runoff.
- Modify SWPPP prior to construction to control sedimentation and erosion.
- Conduct field inspection and research for coordination with the RI Historical Preservation & Heritage Commission and RI Historical Society to identify potential cultural resources sites.
- Contact US NRCS to determine if projects affect soils under Federal Farmland Protection Act.

Chapter 8 – Implementation

This chart below represents a list of recommended future airport need. They represent the projects that could part of the RIAC CIP and considered for the FAA AIP. The 5-year, Phase I development is the highest priority and most needed airport development.

Phase I (2010-2014)	Phase II (2015-2019)
 Provide LPV Approach on Runway 5 	 Rehabilitate Apron (Phase I)
 Provide Obstruction Free Runway RVZ 	 Rehabilitate Taxiway "B"
 Construct of SRE Building 	 Expand Aircraft Apron (Phase 1)
Construct Access Road Connecting	 Rehabilitate Old Terminal Building Extend Tariway #A#
 Old and New Terminal Building 	 Extend Taxiway "A" Upgrade R/W 5 Approach Lighting
	 Expand Apron (Phase 2)
<u>Phase III (2020-2029)</u>	Summary of Private Development
 Rehabilitate Runway 15/33 	 2010-2014 10 Unit T-Hangars
 Extend Perimeter Fencing 	 2015-2019 10 Unit T-Hangars and New NE Hangar
 Expand Aircraft Apron (Phase 3) 	 2020-2029 10 Unit T-Hangar and1Conventional
Renabilitate Runway 5/23	Hangar